Skocz do zawartości

Polecane posty

Czy składnia tego będzie działać też na starszych wersjach Octave'a?

Zad 1
Utworzyć tablicę przechowującą sumy cząstkowe
szeregu ∑(n=1,10) n.
% Zad 1
disp("# Zad 1")
A = [];
s = 0;
for i = 1:10
s = s + i;
A(i) = s;
end
wynik = A
Zad 2
Rozwiązać układ równań:
x1 +2x2 -x3 +3x4 = 7
-3x1 + x2 + x4 = 0
2x1 + x2 +x3 = 7
x1 - x2 +x3 + x4 = 1
% Zad 2
disp("# Zad 2")
R = [1 2 -1 3
-3 1 0 1
2 1 1 0
1 -1 1 1];
W = [7; 0; 7; 1];
wynik = R\W
Zad 3
Przy pomocy wbudowanej funkcji quad obliczyć
całkę ∫(1,2) sin(x)+x z dokładnością do 3 miejsca po
przecinku.
% Zad 3
disp("# Zad 3")
xp = 1;
xk = 2;
tol = 3;
wynik = quad('fun1', xp, xk, tol)
%xp, xk przedziały całkowania
%tol dokładność
Do tego oddzielna funkcja:
function [y] = fun1(x)
y = sin(x) + x;
endfunction
Zad 4
Napisać funkcję liczącą silnię liczby naturalnej n,
korzystając z definicji silni i wywołać ją dla
dowolnego n.
% Zad 4
disp("# Zad 4")
n = 6
wynik = silnia(n)
Do tego oddzielna funkcja:
function [k] = silnia(n)
k = 1;
for i = 1:n
k = k * i;
end
endfunction
main
% Zestaw 1
% Zad 1
disp("# Zad 1")
A = [];
s = 0;
for i = 1:10
s = s + i;
A(i) = s;
end
wynik = A
% Zad 2
disp("# Zad 2")
R = [1 2 -1 3
-3 1 0 1
2 1 1 0
1 -1 1 1];
W = [7; 0; 7; 1];
wynik = R\W
% Zad 3
disp("# Zad 3")
xp = 1;
xk = 2;
tol =3;
wynik = quad('fun1', 1, 2, 2)
%xp, xk przedziały całkowania
%tol dokładność
% Zad 4
disp("# Zad 4")
n = 6
wynik = silnia(n)
do tego oddzielnie
funkcja fun1(x)
oraz silnia(n)
%Obliczanie funkcji
function k = fun1(x)
k = (x.^3 + x.^2 - 3.*x - 3) ;
endfunction
%porównywanie
function k = porownaj (a,b)
if(a<b)
k=-1;
elseif(a>b)
k=1;
else
k=0;
end
endfunction
%macierz randomowa
function s = macierz (n)
A = round(10*rand(n))
suma = 0;
k = 1;
while (k <= n)
suma = suma + A(k,k);
k = k + 1;
endwhile
s = suma;
endfunction
Zad 1
Dla macierzy A = [1 2 3; 1 0 2] i dowolnie
stworzonych przez siebie macierzy B i C wykonać:
a) mnożenie tablicowe macierzy A i B,
b) mnożenie macierzowe macierzy A i C.
% Zad 1
disp("# Zad 1")
A = [1 2 3; 1 0 2];
B = [2 4 5; 2 1 5];
C = [2 4; 5 3; 9 3];
disp("# a")
wynik = A .* B
disp("# b");
wynik = A * C
Zad 2
Dla szeregu ∑(n=1,∞) 1/n*sqrt(n) podać indeks
liczby, której suma cząstkowa jest mniejsza od
0.001.
% Zad 2
disp("# Zad 2")
x = 1;
s = 0;
m = 0.001;
i = 0;
while(x >= m)
i = i + 1;
x = 1 / (i * sqrt(i));
s = s + x;
end
indeks = i
wynik = s
Zad 3
Narysować wykres funkcji f(x)=sin(x)+cos(2x) w
przedziale <0,8π> zielonymi gwiazdkami.
% Zad 3
disp("# Zad 3")
x = 0:0.1:8*pi;
y = sin(x) + cos(2*x);
plot(x,y,'g*');
title("sin(x)+cos(2x)");
xlabel('x');
ylabel('y');
Zad 4
Napisać funkcję obliczającą ciąg Fibonacciego i
wywołać ją dla n = 20.
% Zad 4
disp("# Zad 4")
n = 20
wynik = fib(n)
Do tego oddzielna funkcja:
function [f] = fib(n)
if(n <= 0)
f = 0;
elseif(n == 1)
f = 1;
else
f = fib(n-1) + fib(n-2);
end
endfunction
main
% Zestaw 2
% Zad 1
disp("# Zad 1")
A = [1 2 3; 1 0 2];
B = [2 4 5; 2 1 5];
C = [2 4; 5 3; 9 3];
disp("# a")
wynik = A .* B
disp("# b");
wynik = A * C
% Zad 2
disp("# Zad 2")
x = 1;
s = 0;
m = 0.001;
i = 0;
while(x >= m)
i = i + 1;
x = 1 / (i * sqrt(i));
s = s + x;
end
indeks = i
wynik = s
% Zad 3
disp("# Zad 3")
x = 0:0.1:8*pi;
y = sin(x) + cos(2*x);
plot(x,y,'g*');
title("sin(x)+cos(2x)");
xlabel('x');
ylabel('y');
% Zad 4
disp("# Zad 4")
n = 20
wynik = fib(n)
do tego oddzielnie funkcja fib(n)
Zad 1
Wykonać mnożenie tablicowe podanych macierzy:
A = [1 2 3; 1 0 1],
B = [2 1 2; 0 2 3].
% Zad 1
disp("# Zad 1")
A = [1 2 3; 1 0 1];
B = [2 1 2; 0 2 3];
wynik = A .* B
Zad 2
Dla szeregu ∑(n=1,∞) 1/n podać indeks liczby,
kiedy suma cząstkowa przekroczy liczbę 5.
% Zad 2
disp("# Zad 2")
x = 1;
s = 0;
m = 5;
i = 0;
while(s < m)
i = i + 1;
x = 1 / i;
s = s + x;
end
indeks = i
wynik = s
Zad 3
Narysować niebieską linią wykres wielomianu
interpolacyjnego trzeciego stopnia przechodzącego
przez punkty (0,0),(1,1),(2,0) zaznaczone
czerwonymi okręgami.
% Zad 3
disp("# Zad 3")
x0 = [0 1 2];
y0 = [0 1 0];
w = 3;
p = polyfit(x0,y0,w)
x = -3:0.1:3;
y = polyval(p,x);
plot(x0,y0,'ro',x,y,'b');
title("Interpolacja 3 stopnia");
xlabel('x');
ylabel('y');
Zad 4
Napisać funkcję szukającą litery w podanym ciągu
znaków i wywołać ją dla poniższych argumentów:
L = "Teraz masz zdac",
z = 'c'.
% Zad 4
disp("# Zad 4")
L = "Teraz masz zdac";
z = 'c';
wynik = szukaj(L,z)
Do tego oddzielna funkcja:
function k = szukaj(L,z)
k = 0;
s = size(L);
s = s(2);
for i = 1:s
if L(i) == z
k = i;
break;
end
end
endfunction
main
% Zestaw 3
% Zad 1
disp("# Zad 1")
A = [1 2 3; 1 0 1];
B = [2 1 2; 0 2 3];
wynik = A .* B
% Zad 2
disp("# Zad 2")
x = 1;
s = 0;
m = 5;
i = 0;
while(s < m)
i = i + 1;
x = 1 / i;
s = s + x;
end
indeks = i
wynik = s
% Zad 3
disp("# Zad 3")
x0 = [0 1 2];
y0 = [0 1 0];
w = 3;
p = polyfit(x0,y0,w)
x = -3:0.1:3;
y = polyval(p,x);
%plot(x0,y0,'ro',x,y,'b');
%title("Interpolacja 3 stopnia");
%xlabel('x');
%ylabel('y');
% Zad 4
disp("# Zad 4")
L = "Teraz masz zdac";
z = 'c';
wynik = szukaj(L,z)
do tego oddzielnie funkcja szukaj(L,z)
Zad 1
Zdefiniować poniższe macierze:
A = [1 1 1; 1 1 1],
B = [2; 2],
C = [3 3 3 3],
Złożyć macierz D z podanych powyżej macierzy w
taki sposób, aby wyglądała następująco:
│ 1 1 1 2 │
D = │ 1 1 1 2 │
│ 3 3 3 3 │
% Zad 1
disp("# Zad 1")
A = [1 1 1; 1 1 1];
B = [2; 2];
C = [3 3 3 3];
D = [A, B; C];
wynik = D
Zad 2
Usunąć drugi wiersz macierzy D.
% Zad 2
disp("# Zad 2")
D(2, = [];
wynik = D
Zad 3
Funkcja przyjmuje poniższe wartości:
y = {3*x^2 dla x < 0
{40*sqrt(x) dla x >= 0
Narysować czerwoną linią wykres tej funkcji w
przedziale <-9,0> z krokiem 0.5 oraz <1,15> z
krokiem 1.
% Zad 3
disp("# Zad 3")
x = [[-9:0.5:0],[1:15]];
y = fun1(x);
figure(1);
plot(x,y,'r');
title("Fun1");
xlabel('x');
ylabel('y');
Do tego oddzielna funkcja:
function [y] = fun1(x)
s = size(x);
s = s(2);
for i = 1:s
if x(i) < 0
y(i) = 3 * x(i)^2;
else
y(i) = 40 * sqrt(x(i));
end
end
endfunction
Zad 4
Napisać funkcję, która rysuje na wykresie czarnymi
gwiazdkami choinkę, w zależności od ilości wierszy.
Przykład dla n = 5:
* * * * *
* * * *
* * *
* *
*
% Zad 4
disp("# Zad 4")
n = 5
figure(2);
choinka(n)
Do tego oddzielna funkcja:
function choinka(n)
if n > 0
x = [];
y = [];
k = 0;
for i = 1:n
for j = 1:i
k = k + 1;
x(k) = -j;
y(k) = i;
end
end
plot(x,y,'k*');
axis([-(n+1) 0 0 n+1]);
title("Choinka");
end
endfunction
main
% Zestaw 4
% Zad 1
disp("# Zad 1")
A = [1 1 1; 1 1 1];
B = [2; 2];
C = [3 3 3 3];
D = [A, B; C];
wynik = D
% Zad 2
disp("# Zad 2")
D(2, = [];
wynik = D
% Zad 3
disp("# Zad 3")
x = [[-9:0.5:0],[1:15]];
y = fun1(x);
figure(1);
plot(x,y,'r');
title("Fun1");
xlabel('x');
ylabel('y');
do tego oddzielnie funkcja fun1(x)
% Zad 4
disp("# Zad 4")
n = 5
figure(2);
choinka(n)
do tego oddzielnie funkcja choinka(n)

Udostępnij ten post


Link to postu
Udostępnij na innych stronach

disp("Zadanie 2")

s=0;

i=0;

m=0.01;

x=1;

while(x>=m)

i=i+1;

x=1/(i^2-(1/2));

s=s+x;

endwhile

i

s

Udostępnij ten post


Link to postu
Udostępnij na innych stronach

"main.m"

 

x = 1;

s = 0;

m = 0.01;

i = 0;

while(x > m)

i = i + 1;

x = 1 / (i^2-0.5);

s = s + x;

end

indeks=i

 

y=@(x) 2*sin(4*x);

xp = -1;

xk = 5;

tol = 5;

wynik = quad(y, xp, xk, tol)

 

x = [-2:0.1:2];

[y] = fun1(x);

figure(1);

plot(x,y,'r');

 

 

i osobna "fun1"

 

 

 

function [y] = fun1(x)

s = size(x);

s = s(2);

for i = 1:s

if x(i) < 0

y(i) = sin(x(i)^5);

else

y(i) = x(i)^3-sqrt(x(i));

end

end

endfunction

Udostępnij ten post


Link to postu
Udostępnij na innych stronach

suma = 0;

sc = 0;

n=1;

while suma<=3

sc=((n+1)/((2.*n.*n)+1));

suma = suma+sc;

n=n+1;

endwhile

n;

suma;

 

suma=0;

n =1;

sc=0;

while n!=97

sc=((n+1)/((2.*n.*n)+1));

suma = suma+sc;

n=n+1;

endwhile

n

suma

Udostępnij ten post


Link to postu
Udostępnij na innych stronach

Zadanie 4 funkcja

function [y] = trapezy (a,b,n,f)

h = (b - a)/n;

y = (feval(f,a) + feval(f,b))/2;

for i = 1 : n-1

y = y + feval(f,a+i*h);

end

y = h*y;

 

endfunction

Udostępnij ten post


Link to postu
Udostępnij na innych stronach

3 z czarnej

ii=1

jj=1

suma=0

[w,s]=size(x)

while ii<=w

while jj<=w

suma=suma+x(ii,jj)

jj++

endwhile

jj=ii+1

ii++

endwhile

 

tylko dodac naglowek funkcji

Udostępnij ten post


Link to postu
Udostępnij na innych stronach

Bądź aktywny! Zaloguj się lub utwórz konto

Tylko zarejestrowani użytkownicy mogą komentować zawartość tej strony

Utwórz konto

Zarejestruj nowe konto, to proste!

Zarejestruj nowe konto

Zaloguj się

Posiadasz własne konto? Użyj go!

Zaloguj się

×